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A phase-field model of nonisothermal solidification in dilute binary alloys is used to study the variation of
growth velocity, dendrite tip radius, and radius selection parameter as a function of Lewis number at fixed
undercooling. By the application of advanced numerical techniques, we have been able to extend the analysis
to Lewis numbers of order 10 000, which are realistic for metals. A large variation in the radius selection
parameter is found as the Lewis number is increased from 1 to 10 000.
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INTRODUCTION

The growth of dendritic structures during solidification
has been a subject of enduring interest within the scientific
community, both because it is a prime example of spontane-
ous pattern formation and due to the pervasive influence of
dendrites on the engineering properties of metals. As den-
drites are self-similar when scaled against the tip radius �,
the ability to accurately predict � is a problem of central
importance to the theory of dendritic growth.

However, the prediction of � has proved exceptionally
challenging. Early analytical solutions �1� predicted that it
was the dimensionless Peclet number Pe=V� /2D
�V=growth velocity, D=diffusivity in the liquid� that was
related to undercooling, �T, during growth, leading to a de-
generacy in the product V� not observed in nature. Various
models based on the stability of planar solidification fronts
were proposed �2,3� to break this degeneracy, although ulti-
mately the application of boundary integral methods estab-
lished that it is crystalline anisotropy �4� rather than stability
per se that is responsible for breaking the degeneracy. The
analysis reveals that in the limit of vanishing Pe an equation
similar to that arising from stability arguments is recovered,
but with a radius selection parameter �* that varies as �7/4,
where � is the anisotropy strength.

In recent years significant progress toward understanding
solidification processes has also been afforded by the advent
of phase-field modeling. However, the application of phase-
field modeling has largely been restricted to two limiting
cases: namely, the thermally controlled growth of pure sub-
stances and the solidification of relatively concentrated al-
loys �e.g., �5�� where growth is sufficiently slow that the
problem may be considered isothermal. However, this omits
alloy solidification problems where the isothermal approxi-
mation is not valid, specifically the solidification of very di-
lute alloys and rapid solidification processes.

To date, relatively few attempts have been made to use
phase-field techniques to simulate coupled thermosolutal so-
lidification due to the severe multiscale nature of the problem
�typically the Lewis number Le=� /D is 103–104, where � is
the thermal diffusivity�. Loginova et al. �6� have developed a
coupled model using a derivation based on the solutal model
of Warren and Boettinger �7�, although there are doubts
about the quantitative validity of this model �8� as the nu-

merical results appear to suggest excess solute trapping and
have an unresolved interface width dependence. This meth-
odology has been extended by Lan et al. �9�, who introduced
an adaptive finite-volume solver, which allowed them to use
realistic values of Le, although this did not overcome either
the excess solute trapping or the interface-width dependence
of the solution. An alternative formulation of the coupled
phase-field problem has been presented by Ramirez and
Beckermann �8,10�, based on the Karma �11� thin-interface
model. As the thin-interface model has been shown to be
independent of the length scale chosen for the mesoscopic
diffuse interface width, it is capable of giving quantitatively
correct predictions for dendritic growth, although Ramirez
and Beckermann only used the model at relatively modest
Lewis numbers �typically 40�.

In a previous paper �12� we used a fully implicit, adaptive
finite-difference implementation of the model due to �8� to
investigate the dependence of � upon �T at Le=200, dem-
onstrating that � passes through a minimum with increasing
�T, as predicted by stability models such as that due to Lip-
ton, Kurz, and Trivedi �3� �LKT�. We also showed that the
radius selection parameter, �*, not only varies with �T, but
that the variation is nonmonotonic.

In this paper we now consider the extent to which �, V,
and �* vary as Le is increased at fixed �T. This quantitative
analysis of the Lewis number dependence has previously
been considered in �8�, albeit in the restricted range 1�Le
�200, wherein it was found that the predictions of the LKT
�3� theory were valid for Le�5, with significant deviations
thereafter. Here we extended the analysis to higher values of
Le, including values up to 104, which are of appropriate or-
der for metals, in which dendritic growth is most common.

DESCRIPTION OF THE MODEL

The model adopted here is based upon that of �8� in
which, following nondimensionalization against characteris-
tic length and time scales W0 and �0, the evolution of the
phase field 	 and the dimensionless concentration and tem-
perature fields U and 
 are given by
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where, for fourfold growth, A���=1+� cos�4��, d0 is the
chemical capillary length, kE is the partition coefficient, L
and cp are the latent and specific heats, respectively, and  is
a coupling parameter given by =D /a2=a1W0 /d0, with a1
and a2 taking the values 5	2 /8 and 0.6267, respectively �11�.
U and 
 are related to physical concentration c and tempera-
ture T via

U =
1

1 − kE
�� 2c/c�

1 + kE − �1 − kE�	� − 1�
and


 =
�T − mc�

L/cp
,

where m is the slope of the liquidus line, which has dimen-
sionless form

M =

m
�1 − kE�

L/cp
.

The governing equations are descritized using a finite-
difference approximation based upon a quadrilateral, nonuni-
form, locally refined mesh with equal grid spacing in both
directions. This allows the application of standard second-
order central difference stencils for the calculation of first
and second differentials, while a compact nine-point scheme
has been used for Laplacian terms, in order to reduce the
mesh induced �13� anisotropy. To ensure sufficient mesh res-
olution around the interface region and to handle the extreme
multiscale nature of the problem at high Lewis number, local
mesh refinement �coarsening� is employed when the
weighted sum of the gradients of 	, U, and 
 exceeds �falls
below� some predefined value.

It has been shown elsewhere that if explicit temporal de-
scretization schemes are used for this problem, the maximum
stable time step is given by �t�Ch2, where C
=C� ,Le,�T�, with C varying from �0.3 at Le=1 to C
�0.001 at Le=500 �14�, leading to unfeasibly small time
steps at high Lewis number. Consequently, an implicit tem-

poral descretization is employed here based on the second-
order backward difference formula with variable time step.

When using implicit time discretization methods, it is
necessary to solve a very large, but sparse, system of nonlin-
ear algebraic equations at each time step. Multigrid methods
are among the fastest available solvers for such systems, and
in this work we apply the nonlinear generalization known as
the full approximation scheme �FAS� �15�. The local adap-
tivity is accommodated via the multilevel algorithm origi-
nally proposed by Brandt �16�. The interpolation operator is
bilinear, while injection is used for the restriction operator.
For smoothing the error we use a fully coupled nonlinear
weighted Gauss-Seidel iteration where the number of pre-
and post-smoothing operations required for optimal conver-
gence is determined empirically �14�. Full details of the nu-
merical scheme are given in �12,14,17�.

RESULTS

To explore the effect of Lewis number on V and �, the
model has been run at a fixed undercooling of �=0.15 over
a wide range of Lewis numbers from 1 to 10 000, the latter
being the typical order for metals. A coupling parameter of
=5 has been adopted in all simulations, and in order to
simulate kinetic free growth via the relation =D /a2, we set
D=3.1335, which also fixes the interface width of �5.6d0.
The required variation in Le is effected by varying �. All
other material and computation parameters were held con-
stant across all simulations. We have taken �=0.02, which is
widely used for the anisotropy strength of many metals,
while kE and Mc� have been taken as 0.3 and 0.05, respec-
tively, these being typical of the alloy Cu–5 wt % Ni �for
Cu-Ni, we have at Cu-rich compositions kE�0.3, 
m

=6.2 K /wt %, and L /cp�430 K �18�, giving M
=0.01 /wt % and �T=65 K�. The minimum grid spacing of
h=0.78 is held constant across all simulations, although the
size of the domain is varied such that there is no interaction
between the thermal field and the domain boundary. The
largest domain used was �= �−3200,3200�2, wherein 13 lev-
els of refinement are required to achieve the desired h. This
is equivalent, were a uniform mesh to have been used, of a
mesh size of 213�213. This compares with our previously
reported largest equivalent grid �12� of 212�212 with there-
fore correspondingly longer run times.

We obtain from the model the two key parameters char-
acteristic of dendritic growth: namely, the velocity and radius
of the tip. The latter we obtain by fitting a parabolic profile to
the 	=0 isoline using a fourth-order interpolation scheme
described in �14,12�, as this has generally been felt �8,19� to
be more directly comparable to analytical dendrite growth
theories �3� than the curvature directly from the derivatives
of 	 at the tip. From empirical trials we estimate the error
associated in determining � from the parabolic fitting process
to be around �4%.

The dependence of V and � on Le is shown, in dimension-
less form, in Figs. 1 and 2, respectively �dimensional values
for the Cu–5 wt % Ni example system can be obtained by
taking D�3.2�10−9 m2 s−1 �20� and d0=3.7�10−10 m
�18��. For both � and V, we may delineate high- and low-Le
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behavior, with this boundary occurring around Le=1000. For
high Lewis numbers, � is essentially independent of Le with
a logarithmic dependence at low Le. At the lowest values of
Le studied ��5�, there is possibly a trend toward a leveling
off again, although this has not been investigated as there is
no significance for values of Le�1. Relative to the results
found by �8�, we observe a much larger variation in � over
the comparable range of Lewis numbers �to Le=200 �8� ob-
served � to drop by �30% of its Le=1 value, whereas we
observe a 67% drop�. We attribute this to the fact that we
have conducted our investigation at much lower undercool-
ing, which is consistent with LKT predictions of � as a func-
tion of Le �see, e.g., Fig. 6 in Ref. �12��.

At low Lewis numbers, Vd0 /D varies, to a good approxi-
mation, as a simple power law with an exponent close to 2.5,
leveling off somewhat in the high-Lewis-number regime, al-
though unlike �, V continues to increase with Lewis number
up to the highest values studied. For comparison with �8� we
have also shown Vd0 /� which as in �8� shows little variation

over the range 1�Le�200 �note, however, that the scaling
factor d0 /� is dependent on Le�.

In addition to V and �, an important auxiliary quantity that
may be calculated is the radius selection parameter �*. Fol-
lowing the methodology proposed in �8�, we evaluate �*

based on the LKT �3� definition, where the supersaturation at
the interface is evaluated without reference to the Ivantsov
�1� solution by considering Ui, the value of U “frozen in” at
the interface �taken as 	=0�. The resulting variation of �*

with Le is shown in Fig. 3, where the error shown is �8%
�based on �4% error in � with �* varying as 1 /V�2�. At low
Lewis number, �* may initially show a slight increase with
increasing Le, although the errors associated with determin-
ing �* are such that the results would also be consistent with
�* being constant, which is as found by �8� at similar Lewis
numbers. In the limit of Lewis number of unity, we find that
�*=0.0604, in very close agreement with the value found in
�8�. We find that this value is, as noted in �8�, also close to
that for a dendrite growing under solute only control �the
coupled model can be used for solute only growth at solutal
undercooling � by fixing the system temperature everywhere
at 
sys=−� with Mc�=1− �1−kE�� �see �14���.

For Le�10 we find, in agreement with �8�, that the as-
sumption of constant �* breaks down. However, at high
� ��=0.55� �8� found that �* �LKT definition� first de-
creased slightly before increasing markedly as Le is in-
creased. In contrast, we find that at �=0.15, beyond Le
=10, �* decreases monotonically with increasing Lewis
number, dropping to �0.025 at Le=10 000. This represents a
variation of around a factor of 3 over the range of Le studied.

SUMMARY AND DISCUSSION

We have used a phase-field model of nonisothermal so-
lidification in dilute binary alloys to study the variation of V,
�, and �* as a function of Lewis number at fixed undercool-
ing. By using advanced numerical techniques such as mesh
adaptivity, implicit time stepping, and multigrid methods, we
have been able to extend the analysis to Lewis numbers of

FIG. 1. Calculated variation of the dimensionless radius of cur-
vature at the tip as a function of Lewis number.

FIG. 2. Calculated variation of the dimensionless tip velocity as
a function of Lewis number �left-hand scale and solid markers non-
dimensionalized against d0 /D, right-hand scale, and open markers
against d0 /��.

FIG. 3. Calculated variation of the radius selection parameter �*

as a function of Lewis number.
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order 10 000, these values being typical of metallic systems.
Moreover, the formulation of the nonisothermal problem
based on the thin-interface model which we have adopted
from �8� means that these results should be independent of
the width assumed for the diffuse interface, giving them a
quantitative validity which cannot be claimed by formula-
tions of the problem not based around the thin-interface
model, such as �6,9�. We find that the tip radius � drops
monotonically with increasing Le, becoming almost constant
at high Le with a value in this case close to 70d0, while V
increases monotonically with increasing Le, reaching a value
of �0.1d0 /D at the highest values of Le studied. For the
example system of Cu–5 wt % Ni this would correspond to
a dimensional growth velocity �the primary quantity mea-
sured during rapid solidification experimentation �see, e.g.,
�21,22�� of 0.9 m s−1, although direct comparison with ex-
periment is not possible as two- and three-dimensional so-
lidifications are quantitatively different. For the radius, and
to a lesser extent the tip velocity, qualitatively different be-
havior is seen in what we may define as the low-Lewis-
number regime �Le�1000� to that in the high-Lewis-number
regime, and this value therefore defines a minimum level at
which simulations may be classed as approaching “realistic”

for metallic systems. This transition, albeit rather gradual,
presumably delineates which of the two transport processes
is dominant.

The radius selection parameter �* has been calculated as
a function of Le, and a variation of a factor of 3 is observed
over the range of Lewis numbers studied. This further high-
lights the potential limitations of assuming constant �* in
analytical models of solidification to predict dendrite length
scales. Moreover, for Le�10, �* decreases monotonically
with increasing Le, raising an apparent contradiction as in
the limit Le→� the dendrite should return to fully solutal
control and the value of �* appropriate to the solute-only
model should be recovered. In both this and previous studies
�12,14�, the model has produced results in close agreement
with other authors �for Le�200, see �8,10��, giving us rea-
sonable confidence in the numerical scheme employed. Cur-
rently therefore we are unable to offer a definitive explana-
tion for this anomaly, although it may be that in the case
studied here the maximum value of Le is not sufficiently
high to recover the limiting case of Le→�. This would be
consistent with experiment where at low undercoolings �i.e.,
�=0.15� the solidification of metals �Le�104� would still be
expected to be under coupled thermosolutal control.
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